SANYO Semiconductors

DATA SHEET

LA7138M - $\underset{\substack{\text { Monolitic Linear IC } \\ \text { For the DVD Player }}}{\text { An }}$
 Analog Video Signal I/F Driver

Overview

The LA7138M is a video output interface IC for DVD players. It is an ideal DVD player driver IC that generates analog video signals such as composite/S and component/RGB signals. Incorporating Y/C-MIX, the LA7138M can dispense with the composite output that would otherwise have to be provided by a DA converter.

Feature

- Video S/N ratio: -80dB.
- f characteristics: 10 MHz flat.
- Y/C time difference: 2ns maximum.
- Signal dynamic range: 170 IRE.
- Supports all types of video signals including the composite/S, component, and base-band (RGB) signals; the internal input configuration is selected under microcontroller control (input capacitors to be used in common).
- Provides two channels of 75Ω driver outputs each of which can be muted on and off independently under microcontroller control.
- Internally generates clamp pulses that are necessary when receiving the component input signals.
- The amplifier gain is selectable from 8.5 dB and 6 dB .
- The on-chip regulator circuit provides stable DC voltages that are immune to VCC fluctuations.

Function

- Clamp.
- Amplifier.
- 75Ω driver.
- Y/C-MIX.
- DC voltage output for S1 and S2.

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {CC }}$ max		15.0	\checkmark
Allowable power dissipation	Pdmax	$\mathrm{Ta} \leq 75^{\circ} \mathrm{C}$, Mounted on a board*	525	mW
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

*: As mounted to the glass epoxy made board of a size $114.3 \times 76.1 \times 1.6 \mathrm{~mm}^{3}$
\square Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage A	$\mathrm{V}_{\mathrm{CC}} \mathrm{A}$	*	12.0	V
Operating supply voltage range A	$\mathrm{V}_{\mathrm{CCO}} \mathrm{op} A$		9.0 to 13.0	V
Recommended supply voltage B	$\mathrm{V}_{\mathrm{CC}} \mathrm{B}^{\text {b }}$	*	8.0	V
Operating supply voltage range B	$\mathrm{V}_{\text {CCop }} \mathrm{B}$		7.5 to 8.5	V
Input pin voltage application range	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {CCop }} \mathrm{A}, \mathrm{B}+0.3 \leq 13 \mathrm{~V}$	-0.3 to $\mathrm{V}_{\text {CC }}$ op A, B+0.3	V

*:A different operation circuit is recommended for recommended supply voltages A and B. An external operation circuit with a PNP transistor for voltage drop is recommended for the recommended supply voltage A.

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=9.0$ to $13.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathrm{B}=7.5$ to 8.5 V

Parameter	Symbol	Input signal	Test point	Conditions	Ratings			Unit
					min	typ	max	
Current drain (1)	${ }^{1} \mathrm{CC}{ }^{1}$		9pin	Current drain of VIDEO system.	29.6	37.0	44.4	mA
(A) Pin 10 (Y signal) input when the composite/S is selected.								
AMP-GAIN (Low)	$\mathrm{G}_{\mathrm{Y}} \mathrm{M}$	Sig. 1	T13/15	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	$\mathrm{G}_{\mathrm{Y}} \mathrm{H}$	Sig. 1	T13/15	GAIN when 761 mVp -p, 100kHz is entered.	7.38	7.6	7.81	dB
Clamp voltage	$\mathrm{C}_{10} \mathrm{H}$	Sig. 1	T10	Potential of sink chip of T10 when 761mVp-p is entered.	3.85	4.20	4.55	V

(B) Pin 6 (chroma signal) input when the composite/S is selected.

AMP-GAIN (Low)	GCM	Sig.2	T17/19	GAIN when $711 \mathrm{mVp}-\mathrm{p}, 3.58 \mathrm{MHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	GCH	Sig.2	T17/19	GAIN when $544 \mathrm{mVp}-\mathrm{p}, 3.58 \mathrm{MHz}$ is entered.	7.38	7.6	7.81	dB
Chroma input DC voltage	$\mathrm{D}_{6} \mathrm{H}$	Sig.2	T6	Offset voltage of T6 when 544 mVp -p is entered.	4.4	4.75	5.1	V

(C) Pin 3 (composite signal) input when the composite is selected.

AMP-GAIN (Low)	GSM1	Sig.3	T21/23	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	$\mathrm{G}_{\mathrm{S}} \mathrm{H} 1$	Sig.3	T21/23	GAIN when $761 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	7.38	7.6	7.81	dB
Clamp voltage	$\mathrm{C}_{3} \mathrm{H}$	Sig.3	T 3	Potential of sink chip of T3 when $761 \mathrm{mVp}-\mathrm{p}$ is entered.	4.0	4.35	4.7	V

(D) Pins 6, 10 (S signal) input when the S is selected.

To select "S", insert a $5.1 \mathrm{k} \Omega$ resistor in series with pin 2, (See the block diagram.)

AMP-GAIN (Low)	GSM2	Sig.1 Sig.2	T21/23	GAIN when $996 \mathrm{mVp-p,100kHz} \mathrm{or} \mathrm{711mVp-p}$, 3.58 MHz is entered.	4.92	5.27	5.61	dB
AMP-GAIN (High)	GSH2	Sig.1 Sig.2	T21/23	GAIN when $761 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ or $544 \mathrm{mVp}-\mathrm{p}$, 3.58 MHz is entered.	7.25	7.6	7.94	dB

(E) GAIN ratio of signals when the composite is selected.

Y/chroma -AMP-GAIN ratio	${ }^{\Delta} Y_{C}$	$\begin{aligned} & \text { Sig. } 1 \\ & \text { Sig. } 2 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{T} 13 / 15 \mathrm{~T} \\ 17 / 19 \end{array}$	GAIN ratio between $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ of (A) and $\mathrm{G}_{\mathrm{C}} \mathrm{H}$ of (B).	-3	0	3	\%
Y/composite-AMPGAIN ratio	$\Delta Y_{S}{ }^{1}$	$\begin{aligned} & \text { Sig. } 1 \\ & \text { Sig. } 3 \end{aligned}$	$\begin{aligned} & \mathrm{T} 13 / 15 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	GAIN ratio between $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ of (A) and $\mathrm{G}_{\mathrm{S}} \mathrm{H} 1$ of (C).	-3	0	3	\%
Chroma/composite -AMP-GAIN ratio	$\Delta \mathrm{C}_{\mathrm{S}}{ }^{1}$	$\begin{aligned} & \text { Sig. } 2 \\ & \text { Sig. } 3 \end{aligned}$	$\begin{aligned} & \mathrm{T} 17 / 19 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	GAIN ratio between $\mathrm{G}_{\mathrm{C}} \mathrm{H}$ of (B) and $\mathrm{G}_{\mathrm{S}} \mathrm{H} 1$ of (C).	-3	0	3	\%

(F) GAIN ratio of signals when the S signal is selected.

Y/S-AMP-GAIN ratio	${ }^{\text {Y }} \mathrm{S}^{2}$	$\begin{aligned} & \text { Sig. } 1 \\ & \text { Sig. } 2 \end{aligned}$	$\begin{aligned} & \mathrm{T} 13 / 15 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	GAIN ratio between $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ of (A) and $\mathrm{G}_{\mathrm{S}} \mathrm{H} 2$ of (D)	-4.5	0	4.5	\%
Chroma/S-AMP- GAIN ratio	$\Delta \mathrm{C}^{2} 2$	$\begin{aligned} & \hline \text { Sig. } 1 \\ & \text { Sig. } 2 \end{aligned}$	$\begin{aligned} & \mathrm{T} 17 / 19 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	GAIN ratio between $\mathrm{G}_{\mathrm{C}} \mathrm{H}$ of (B) and $\mathrm{G}_{\mathrm{S}} \mathrm{H} 2$ of (D).	-4.5	0	4.5	\%

(G) Pin 10 (Y signal) input when the component is selected.

AMP-GAIN (Low)	GYM	Sig.1	T13/15	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	$\mathrm{G}_{\mathrm{Y}} \mathrm{H}$	Sig.1	T13/15	GAIN when $761 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	7.38	7.6	7.81	dB
Y input clamp voltage	$\mathrm{C}_{10} \mathrm{H}$	Sig.1	T10	Potential of sink chip of T10 when $761 \mathrm{mVp}-\mathrm{p}$ is entered.	3.85	4.20	4.55	V

LA7138M
Continued from preceding page.

Parameter	Symbol	Input signal	Test point	Conditions	Ratings			Unit
					min	typ	max	
(H) Pin 6 (B-Y or R-Y signal) when the component is selected.								
AMP-GAIN (Low)	$\mathrm{G}_{\mathrm{N}} \mathrm{M}$	Sig. 4	T17/19	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	$\mathrm{G}_{\mathrm{N}} \mathrm{H}$	Sig. 4	T17/19	GAIN when $761 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	7.38	7.6	7.81	dB
Input pedestal clamp voltage	$\mathrm{P}_{6} \mathrm{H}$	Sig. 4	T6	Potential of pedestal of T6 when 761 mVp -p is entered.	4.4	4.75	5.1	V
AMP-GAIN (Low)	$\mathrm{G}_{\mathrm{N}} \mathrm{M}$	Sig. 4	T21/23	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB

(I) Pin 3 ($B-Y$ or $R-Y$ signal) input when the component is selected.

AMP-GAIN (High)	$G_{N} \mathrm{H}$	Sig.4	T21/23	GAIN when $761 \mathrm{mVp-p}$,100 kHz is selected.	7.38	7.6	7.81	dB
Input pedestal clamp voltage	$\mathrm{P}_{3} \mathrm{H}$	Sig.4	T 3	Potential of pedestal of T 3 when $761 \mathrm{mVp-p}$ is entered.	4.4	4.75	5.1	V

(J) GAIN ratio of signals when the component is selected.

Y/composite-AMP-	$\Delta Y 1$	Sig.1	T13/15	GAIN ratio between $G_{Y} H$ of (E) and $G_{N} H$ of (F)	-3		0	3
GAIN ratio (1)		Sig.4	T17/19					
Y/composite-AMP-	$\Delta Y 2$	Sig.1	T13/15	GAIN ratio between $G_{Y} H$ of (E) and $G_{N} H$ of (G)	-3		0	3
GAIN ratio (2)		Sig.4	T21/23		$\%$			
Component-AMP-	ΔN	Sig.4	T17/19	GAIN ratio between $G_{N} H$ of (F) and that of (G)	-3	0	3	$\%$
GAIN ratio		Sig.4	T21/23					

(K) Pin 10 (RGB signal) input when the base band is selected.

AMP-GAIN (Low)	$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	Sig.1	T13/15	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	Sig.1	T13/15	GAIN when $761 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	7.38	7.6	7.81	dB
Input clamp voltage	$\mathrm{C}_{10} \mathrm{H}$	Sig.1	T 10	Potential of sink chip of T 10 when $761 \mathrm{mVp}-\mathrm{p}$ is entered.	3.85	4.20	4.55	V

(L) Pin 6 (RGB signal) Input when the base band is entered.

AMP-GAIN (Low)	$G_{B} M$	Sig.1	T13/15	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	Sig.1	T13/15	GAIN when $761 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	7.38	7.6	7.81	dB
Input clamp voltage	$\mathrm{C}_{6} \mathrm{H}$	Sig.1	T10	Potential of sink chip of T10 when 761 mVp -p is entered.	4.0	4.35	4.7	V

(M) Pin 3 (RGB signal) Input when the base band is entered.								
AMP-GAIN (Low)	$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	Sig. 1	T13/15	GAIN when $996 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	5.05	5.27	5.48	dB
AMP-GAIN (High)	$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	Sig. 1	T13/15	GAIN when $761 \mathrm{mVp}-\mathrm{p}, 100 \mathrm{kHz}$ is entered.	7.38	7.6	7.81	dB
Input clamp voltage	$\mathrm{C}_{3} \mathrm{H}$	Sig. 1	T10	Potential of sink chip of T10 when 761 mVp -p is entered.	4.0	4.35	4.7	V

(N) GAIN ratio of signals when the base band is selected.								
Base bank -AMPGAIN ratio (1)	$\Delta \mathrm{B} 1$	$\begin{aligned} & \hline \text { Sig. } 1 \\ & \text { Sig. } 1 \end{aligned}$	$\begin{aligned} & \mathrm{T} 13 / 15 \\ & \mathrm{~T} 17 / 19 \\ & \hline \end{aligned}$	GAIN ratio between $\mathrm{G}_{\mathrm{B}} \mathrm{H}$ of (I) and that of (J)	-3	0	3	\%
Base band -AMP- GAIN ratio (2)	$\Delta \mathrm{B} 2$	Sig. 1 Sig. 1	$\begin{aligned} & \mathrm{T} 13 / 15 \\ & \mathrm{~T} 21 / 23 \\ & \hline \end{aligned}$	GAIN ratio between $\mathrm{G}_{\mathrm{B}} \mathrm{H}$ of (I) and that of (K)	-3	0	3	\%
Base band -AMPGAIN ratio	-B3	Sig. 1 Sig. 1	$\begin{aligned} & \mathrm{T} 17 / 19 \\ & \mathrm{~T} 21 / 23 \end{aligned}$	GAIN ratio between $\mathrm{G}_{\mathrm{B}} \mathrm{H}$ of (J$)$ and that of (K)	-3	0	3	\%

(O) f characteristics of GAIN (common to all modes and input signals, however, except for Y/C-MIX).

LPF 6MHz attenuation	FY6	Sig.1	T13/15	Difference between GAIN and GYH when $761 \mathrm{mVp-p}$,6 MHz is entered.	-0.5	0	+0.5	dB
LPF 10 MHz attenuation	FY10	Sig.1	T13/15	Difference between GAIN and GYH when $761 \mathrm{mVp}-\mathrm{p}, 10 \mathrm{MHz}$ is entered.	-0.5	0	+0.5	dB

(P) DC voltage for output mute (common to all modes).

Pin 13 voltage	V_{13}		T 13		3.7	4.05	4.4
Pin 15 voltage	V_{15}		T 15		3.7	4.05	4.4
Pin 17 voltage	V_{17}		T 17		3.9	4.25	4.6
Pin 19 voltage	V_{19}		T 19		3.9	4.25	4.6
Pin 21 voltage	V_{21}		T 21		3.9	4.25	4.6
Pin 23 voltage	V_{23}		T 23		V		

Continued on next page.

LA7138M

Continued from preceding page.

Parameter	Symbol	Input signal	Test point	Conditions	Ratings			Unit
					min	typ	max	
* Output DC voltage characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}} \mathrm{A}=9.0$ to 13.0 V								
Output DC for 4: 3	V_{43}		T16	For 4:3 mode control (no load)	0	0.01	0.35	V
Output DC for Letter -Box	$\mathrm{V}_{\text {LB }}$		T16	For the Letter-Box mode control (Load current $500 \mu \mathrm{~A}$ to flow out)	2.05	2.2	2.35	V
Output DC for squeeze	$\mathrm{V}_{\text {SQ }}$		T16	For squeeze mode control (Load current $500 \mu \mathrm{~A}$ to flow out)	4.4	4.7	5.0	V
* Output DC voltage characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}} \mathrm{B}=7.5$ to 8.5 V								
Output DC for 4: 3	V_{43}		T16	For 4:3 mode control (no load)	0	0.01	0.35	V
Output DC for Letter-Box	V_{LB}		T16	For the Letter-Box mode control (Load current $500 \mu \mathrm{~A}$ to flow out)	1.90	2.15	2.40	V
Output DC for squeeze	$\mathrm{V}_{\text {SQ }}$		T16	For squeeze mode control (Load current $500 \mu \mathrm{~A}$ to flow out)	4.15	4.60	5.00	V

Note) Each of AMP-GAIN and AMP-GAIN ratios is the value when the output pin part shown in the test circuit diagram is inserted.

Sig. 1

Sig. 2

Sig. 3

Design Guarantee Items at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Except for Y/C-MIX ($\mathrm{V}_{\mathrm{CC}} \mathrm{A}=9.0$ to $13.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathrm{B}=7.5$ to 8.5 V)						
Channel crosstalk	CT	The signal which becomes $1 \mathrm{Vp}-\mathrm{p}$ at $\mathrm{f}=4 \mathrm{MHz}$ and with the output in C connection is entered in other channels. Measure the magnitude of monitor channel output pins at 4 MHz and specify the ratings as a ratio relative to the magnitude of output pin of other channels at 4 MHz .		-65	-60	dB
Video S/N ratio	SN	Enter the Y signal with 100% white and apply 3.3 V to pin 11 . Measure S / N of the output signal. * Refer to Note 1.		-80	-78	dB
Differential gain	DG	Enter the 1Vp-p standard stair step signal (color) to obtain pin $11=$ OPEN. Measure the differential gain of the output signal, with the output pin part shown in the measuring circuit diagram inserted.		0.5	2	\%
Differential phase	DP	Enter the 1Vp-p standard stair step signal (color) to obtain pin $11=$ OPEN. Measure the differential phase of the output signal, with the output pin part shown in the measuring circuit diagram inserted.	-1	0	1	dB
For Y/C-MIX ($\mathrm{V}_{\mathrm{CC}} \mathrm{B}=7.5$ to 8.5 V)						
Channel crosstalk	CT	The signal which becomes $1 \mathrm{Vp}-\mathrm{p}$ at $\mathrm{f}=4 \mathrm{MHz}$ and with the output in C connection is entered in other channels. Measure the magnitude of monitor channel output pins at 4 MHz and specify the ratings as a ratio relative to the magnitude of output pin of other channels at 4 MHz .		-65	-60	dB
Video S/N ratio	SN	Enter the Y signal with 100% white and add pin $11=3.3 \mathrm{~V}$. Measure S / N of the output signal. * Refer to Note 1.		-74	-72	dB
Differential gain	DG	Enter the 761mVp-p standard stair step signal (color) to obtain pin $11=3.3 \mathrm{~V}$. Measure the differential gain of the output signal, with the output pin part shown in the measuring circuit diagram inserted.		4	5.5	\%
Differential phase	DP	Enter the $761 \mathrm{mVp}-\mathrm{p}$ standard stair step signal (color) to obtain pin $11=3.3 \mathrm{~V}$. Measure the differential phase of the output signal, with the output pin part shown in the measuring circuit diagram inserted.	-1	0.5	1.5	dB

* Note 1) Since the noise in IC is dependent on the stability of regulator, it is recommended to connect a $470 \mu \mathrm{~F}$ capacitor when the S / N ratio of -80 dB is to be secured for controls other than $\mathrm{Y} / \mathrm{C}-\mathrm{MIX}$. To secure the S / N ratio of -74 dB for $\mathrm{Y} / \mathrm{C}-\mathrm{MIX}$, set the supply voltage to $8 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}} \mathrm{B}\right)$ and apply 8 V also to this pin. (See the test circuit B.)

Package Dimensions

unit: mm
3112B

Block Diagram

Test Circuit

Input/Output form Diagram

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin name	I/O	Pin voltage	$\begin{gathered} \hline \text { Input/ } \\ \text { Output } \\ \text { impedance } \end{gathered}$	Function	Equivalent circuit
1	MUTE	1	1.7V	$21 \mathrm{k} \Omega$	Mute control pin for video signal outputs (Pins 13, 15, 17, 19 and 21). Control can be made with a microcontroller operating on 3.3 to 5.0 V power supply.	
2	SIG.SW	1	1.7V	$21 \mathrm{k} \Omega$	Pin to select the input form of pins 3 and 6 according to the type of input signal (composite/s/component/ base band). Control can be made with a microcontroller operating on 3.3 to 5.0 V power supply. Add a $5.1 \mathrm{k} \Omega$ resistor in series externally.	
3	COMP.IN	I	4.5 V	Clamp form	Video signal input pin. Enter the composite signal for input of the composite/S signal. Enter the B-Y or R-Y signal for input of the component signal. For input of the base band, enter any of RGB signals that have a sync signal. (This pin is connected to GND when the S signal is entered.)	
4	SQ.SW	1	2.4 V	$9.0 \mathrm{G} \Omega$	Pin to enter the squeeze information. Control can be made with a microcontroller that operates on 3.3 to 5.0 V power supply.	
5	LB.SW	I	2.43 V	$8.1 \mathrm{G} \Omega$	Pin to enter the Letter-Box information. Control can be made with a microcontroller that operates on 3.3 to 5.0 V power supply.	
22	COMP.SW	I	2.4 V	$9.0 \mathrm{G} \Omega$	Y/C-MIX ON/OFF control pin. Be sure to set this pin HIGH in cases other than composite/S control of pin 2. Control is possible with a microcontroller operating on 3.3 to 5.0 V power supply or through selection of $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ on the substrate.	

Continued on next page.

LA7138M
Continued from preceding page.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Pin name	I/O	Pin voltage	Input/ Output impedance	Function	Equivalent circuit
6	C.IN	1	4.8 V	$10 \mathrm{k} \Omega$	Video signal input pin. Enter the chroma signal for input of composite/S signal. Enter the $\mathrm{B}-\mathrm{Y}$ or $\mathrm{R}-\mathrm{Y}$ signal for input of the component signal input. For input of the base band signal, enter any of RGB signals that have a sync signal.	
8	REG	O	8V	$1.5 \mathrm{k} \Omega$	Pin for the regulator that generates an 8 V supply voltage in IC. To use the supply voltage of 12 V , connect a collector of the external PNP transistor (see the test circuit A). Since the noise in IC is dependent on the stability of regulator, it is recommended to connect a $470 \mu \mathrm{~F}$ capacitor when the S / N ratio of -80 dB is to be secured for controls other than Y/C-MIX. To secure the S / N ratio of -74 dB for $\mathrm{Y} / \mathrm{C}-\mathrm{MIX}$, set the supply voltage to $8 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}} \mathrm{B}\right)$ and apply 8 V also to this pin. (See the test circuit B.)	
10	Y.IN	1	4.2 V	Clamp form	Video signal input pin. Enter the Y signal for input of composite/S and component signal. For input of the base band signal, enter any of RGB signals that have a sync signal.	
11	AMP.SW	1	2.4 V	$9.0 \mathrm{G} \Omega$	Control pin to select the AMP gain according to the input signal amplitude. Control is possible with a microcontroller that operates on 3.3 to 5.0 V power supply as well as through selection of $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ on a substrate.	
12	PNP-B-IN	O	3.4 V	$4.0 \mathrm{G} \Omega$	Base input pin of the external PNP transistor for the 8 V regulator. Connect to the transistor in case of the supply voltage of 12 V (see the test circuit A). To use the supply voltage of 8 V , keep this pin open (see the test circuit B).	

Continued on next page.

LA7138M

Control Pin Function Table

Pin No.	Pin condition	LOW	OPEN	HIGH
Pin 1	Pin voltage	0 to 0.6 V	1.55 to 1.75 V	2.7 to 5 V
	Mute of 75Ω driver	$13,17,21$ mute	No mute	$15,19,23$ mute
	Pin voltage	0 to 0.6 V	1.55 to 1.75 V	2.7 to 5 V
Pin 11	Signal input mode select	Composite/S	Base band	Component
	Pin voltage	0 to 1 V	2.7 to 8 V (Note)	
	AMP-GAIN select	6 dB	8.5 dB	

Note: Do not apply to pins 11 and 22 a voltage higher than the REG \& $\mathrm{V}_{\mathrm{CC}} 2$ voltages of pins 8 and 20 .

* Do not use Y/C-MIX for cases other than composite/S.
* For composite, the chroma signal is entered with pin 6 in C connection, the composite signal is entered with pin 3 clamped, and the Y signal is entered with pin 9 clamped. However, for S, Pin 3 has no input.
For component, the B-Y/R-Y signal is entered with pins 3 and 6 clamped to pedestal and the Y signal is entered with pin 10 clamped.
For base band, the RGB signal is entered with pins 3,6 , and 10 clamped.
Do not use Pins 11 and 22 in the OPEN state.

Pin 4	Pin 5	Pin 16 output DC
0 to 1 V	0 to 1 V	LOW $(0 \mathrm{~V}) \rightarrow 4: 3$ Mode
0 to 1 V	2.6 to 5 V	MIDDLE $(2.5 \mathrm{~V}) \rightarrow$ Letter-Box mode
2.6 to 5 V	0 to 1 V	HIGH $(5 \mathrm{~V}) \rightarrow$ Squeeze mode
2.6 to 5 V	2.6 to 5 V	Not allowed

LA7138M
Switch conditions

Symbol	Control voltage (Unit: V)						Switch conditions	
	VDC1	VDC2	VDC4	VDC5	VDC11	VDC22	SW1	SW2
ICC1	0	0	3.3	0	3.3	3.3	ON	ON
ICC2	0	0	3.3	0	3.3	3.3	ON	ON

(A) Pin 10 (Y signal) input when the composite/S is selected.

$G_{Y M}$	$0 / 3.3$	0	$*$	$*$	0	3.3	ON/OFF	ON
$G_{Y H}$	$0 / 3.3$	0	$*$	$*$	3.3	3.3	ON/OFF	ON
$\mathrm{C}_{10} \mathrm{H}$	$0 / 3.3$	0	$*$	$*$	3.3	3.3	ON/OFF	ON

(B) Pin 6 (chorma signal) input when the composite/S is selected.

$\mathrm{G}_{\mathrm{C}} \mathrm{M}$	$0 / 3.3$	0	${ }^{*}$	${ }^{*}$	0	3.3	ON/OFF	ON
$\mathrm{G}_{\mathrm{C}} \mathrm{H}$	$0 / 3.3$	0	${ }^{*}$	${ }^{*}$	3.3	3.3	ON/OFF	ON
$\mathrm{C}_{6} \mathrm{H}$	$0 / 3.3$	0	$*$	$*$	3.3	3.3	ON/OFF	ON

(C) Pin 3 (composite signal) input when the composite is selected.

$G_{S} M 1$	$0 / 3.3$	0	$*$	$*$	0	3.3	ON/OFF	ON
$\mathrm{G}_{\mathrm{S}} \mathrm{H} 1$	$0 / 3.3$	0	${ }^{*}$	${ }^{*}$	3.3	3.3	ON/OFF	ON
$\mathrm{C}_{3} \mathrm{H}$	$0 / 3.3$	0	$*$	$*$	3.3	3.3	ON/OFF	ON

(D) GAIN ratio of signals when the composite/S is selected.

	$*$	$*$	0	0	ON/OFF	ON		
$\mathrm{GSM}_{S} \mathrm{H} 2$	$0 / 3.3$	0	${ }^{*}$	${ }^{*}$	${ }^{*}$	3.3	0	ON/OFF

(E) GAIN ratio of signals when the composite is selected.

$\Delta \mathrm{Y}_{\mathrm{C}}$	$0 / 3.3$	0	${ }^{*}$	$*$	3.3	3.3	ON/OFF	ON
$\Delta \mathrm{Y}_{\mathrm{S}}{ }^{1}$	$0 / 3.3$	0	${ }^{*}$	${ }^{*}$	3.3	3.3	ON/OFF	ON
$\Delta \mathrm{C}^{1} 1$	$0 / 3.3$	0	${ }^{*}$	$*$	3.3	3.3	ON/OFF	ON

(F) GAIN ratio of signals when the S is selected.

$\Delta \mathrm{Y}_{\mathrm{S}}{ }^{2}$	$0 / 3.3$	0	${ }^{*}$	${ }^{*}$	3.3	0	ON/OFF	ON
$\Delta \mathrm{C}_{\mathrm{S}}{ }^{2}$	$0 / 3.3$	0	${ }^{*}$	${ }^{*}$	3.3	0	ON/OFF	ON

(G) Pin 10 (Y signal) input when the component is selected.

| G_{Y} | $0 / 3.3$ | 3.3 | $*$ | $*$ | 0 | 3.3 | ON/OFF | ON |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{G}_{\mathrm{Y}} \mathrm{H}$ | $0 / 3.3$ | 3.3 | ${ }^{*}$ | ${ }^{*}$ | 3.3 | 3.3 | ON/OFF | ON |
| $\mathrm{C}_{10} \mathrm{H}$ | $0 / 3.3$ | 3.3 | $*$ | $*$ | 3.3 | 3.3 | ON/OFF | ON |

(H) Pin 6 ($B-Y$ or R-Y signal) input when the component is selected.

$\mathrm{G}_{\mathrm{N}} \mathrm{M}$	$0 / 3.3$	3.3	$*$	${ }^{*}$	0	3.3	ON/OFF	ON
$\mathrm{G}_{\mathrm{N}} \mathrm{H}$	$0 / 3.3$	3.3	${ }^{*}$	${ }^{*}$	3.3	3.3	ON/OFF	ON
$\mathrm{P}_{6} \mathrm{H}$	$0 / 3.3$	3.3	$*$	$*$	3.3	3.3	ON/OFF	ON

(I) Pin 3 ($\mathrm{B}-\mathrm{Y}$ or $\mathrm{R}-\mathrm{Y}$ signal) input when the component is selected.

$\mathrm{G}_{\mathrm{N}} \mathrm{M}$	$0 / 3.3$	3.3	${ }^{*}$	${ }^{*}$	0	3.3	ON/OFF	ON
$\mathrm{G}_{\mathrm{N}} \mathrm{H}$	$0 / 3.3$	3.3	${ }^{*}$	${ }^{*}$	3.3	3.3	ON/OFF	ON
$\mathrm{P}_{3} \mathrm{H}$	$0 / 3.3$	3.3	$*$	$*$	3.3	3.3	ON/OFF	ON

(J) GAIN ratio of signals when the component is selected.

$\Delta \mathrm{Y} 1$	$0 / 3.3$	3.3	$*$	$*$	3.3	3.3	ON/OFF	ON
$\Delta \mathrm{Y} 2$	$0 / 3.3$	3.3	$*$	$*$	3.3	3.3	ON/OFF	ON
$\Delta \mathrm{N}$	$0 / 3.3$	3.3	$*$	$*$	3.3	3.3	ON/OFF	ON

(K) Pin 10 (RGB signal) input when the base band is selected.

$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	$0 / 3.3$	${ }^{*}$	${ }^{*}$	${ }^{*}$	0	3.3	ON/OFF	OFF
$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	$0 / 3.3$	${ }^{*}$	${ }^{*}$	${ }^{*}$	3.3	3.3	ON/OFF	OFF
$\mathrm{C}_{10} \mathrm{H}$	$0 / 3.3$	$*$	${ }^{*}$	${ }^{*}$	3.3	3.3	ON/OFF	OFF

(L) Pin 6 (RGB signal) input when the base band is selected.

$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	$0 / 3.3$	$*$	$*$	$*$	0	3.3	ON/OFF	OFF
$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	$0 / 3.3$	$*$	$*$	$*$	3.3	3.3	ON/OFF	OFF
$\mathrm{C}_{6} \mathrm{H}$	$0 / 3.3$	$*$	$*$	$*$	3.3	3.3	ON/OFF	OFF

(M) Pin 3 (RGB signal) input when the base band is selected.

$\mathrm{G}_{\mathrm{B}} \mathrm{M}$	$0 / 3.3$	$*$	$*$	${ }^{*}$	0	3.3	ON/OFF	OFF
$\mathrm{G}_{\mathrm{B}} \mathrm{H}$	$0 / 3.3$	$*$	$*$	$*$	3.3	3.3	ON/OFF	OFF
$\mathrm{C}_{3} \mathrm{H}$	$0 / 3.3$	$*$	$*$	$*$	3.3	3.3	ON/OFF	OFF

[^0]| Symbol | Control voltage (Unit: V) | | | | | | Switch conditions | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | VDC1 | VDC2 | VDC4 | VDC5 | VDC11 | VDC22 | SW1 | SW2 |
| (N) GAIN ratio of signals when the base band is selected | | | | | | | | |
| $\Delta \mathrm{B} 1$ | 0/3.3 | * | * | * | 3.3 | 3.3 | ON/OFF | OFF |
| $\Delta \mathrm{B} 2$ | 0/3.3 | * | * | * | 3.3 | 3.3 | ON/OFF | OFF |
| $\Delta \mathrm{B} 3$ | 0/3.3 | * | * | * | 3.3 | 3.3 | ON/OFF | OFF |
| (O) f characteristics of GAIN (common to all modes and input signals, however, except for Y/C-MIX) | | | | | | | | |
| $\mathrm{F}^{6} 6$ | 0/3.3 | 0 | * | * | 3.3 | 3.3 | ON/OFF | ON |
| $\mathrm{F}_{\mathrm{Y}} 10$ | 0/3.3 | 0 | * | * | 3.3 | 3.3 | ON/OFF | ON |
| (P) DC voltage for output mute (common to all modes) | | | | | | | | |
| V_{13} | 0 | * | * | * | 0/3.3 | 0/3.3 | ON | * |
| V_{15} | 3.3 | * | * | * | 0/3.3 | 0/3.3 | ON | * |
| V_{17} | 0 | * | * | * | 0/3.3 | 0/3.3 | ON | * |
| V_{19} | 3.3 | * | * | * | 0/3.3 | 0/3.3 | ON | * |
| V_{21} | 0 | * | * | * | 0/3.3 | 0/3.3 | ON | * |
| V_{23} | 3.3 | * | * | * | 0/3.3 | 0/3.3 | ON | * |
| (Q) Output DC voltage characteristics | | | | | | | | |
| V_{43} | * | * | 0 | 0 | 0/3.3 | 0/3.3 | * | * |
| V_{LB} | * | * | 0 | 3.3 | 0/3.3 | 0/3.3 | * | * |
| $\mathrm{V}_{\text {SQ }}$ | * | * | 3.3 | 0 | 0/3.3 | 0/3.3 | * | * |

[^1]\square Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
\square SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
\square In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
\square No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 2006. Specifications and information herein are subject to change without notice.

[^0]: *: Any condition

[^1]: *: Any condition

